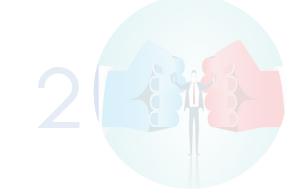
BiLOG 2022 Logistics and Maritime Forum Hydrogen and renewables: the opportunity of proximity energy communities for ports and logistics

Prof. Giovanni Satta Professore Associato Dipartimento di Economia – Università degli Studi di Genova

BiLOG 2022 – Logistics and Maritime Forum – 10/11/2022

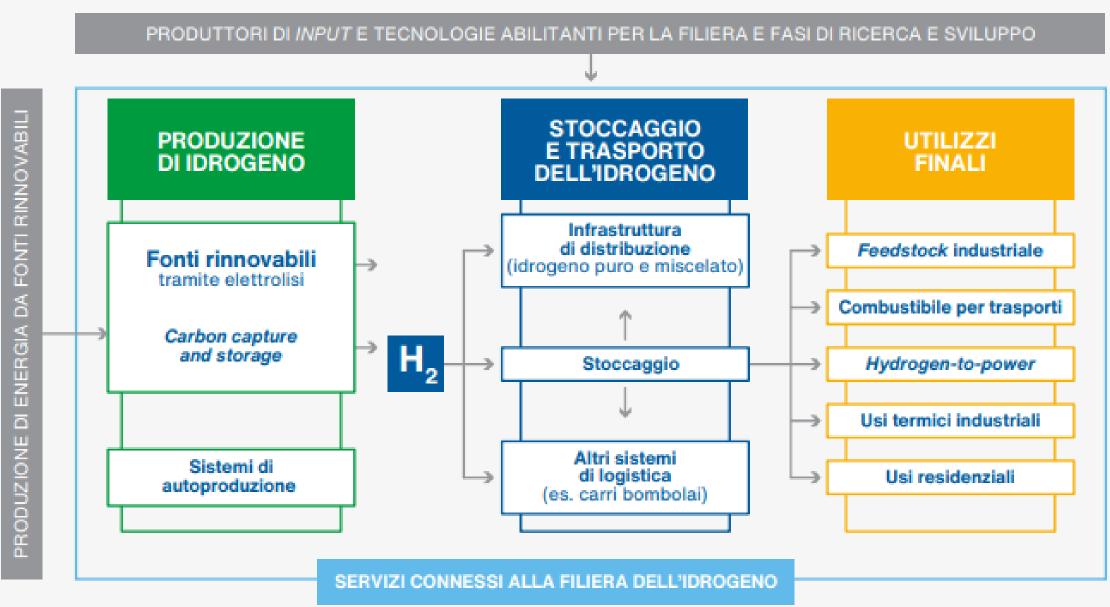


Hot topic

Agenda

Key speakers

BiLOG 2022 – Logistics and Maritime Forum – 10/11/2022


Idrogeno come soluzione di propulsione alternativa

Idrogeno nella logistica

Idrogeno come soluzione di propulsione alternativa La catena del valore

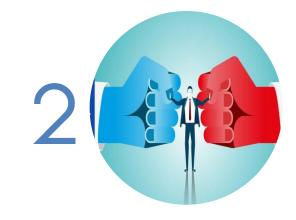
BiLOG 2022 – Logistics and Maritime Forum – 10/11/2022

Idrogeno come soluzione di propulsione alternativa Stato dell'arte in Italia

1% Penetrazione dell'idrogeno nella domanda energetica

32.500 km Rete di trasporto di idrogeno

BiLOG 2022 – Logistics and Maritime Forum – 10/11/2022



Fonte: European Hydrogen Backbone, 2022

Key speakers

BiLOG 2022 – Logistics and Maritime Forum – 10/11/2022

Idrogeno come soluzione di propulsione alternativa

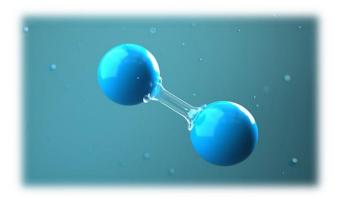
Idrogeno nella logistica

Ostacoli e opportunità

Idrogeno come soluzione di propulsione alternativa Readiness level

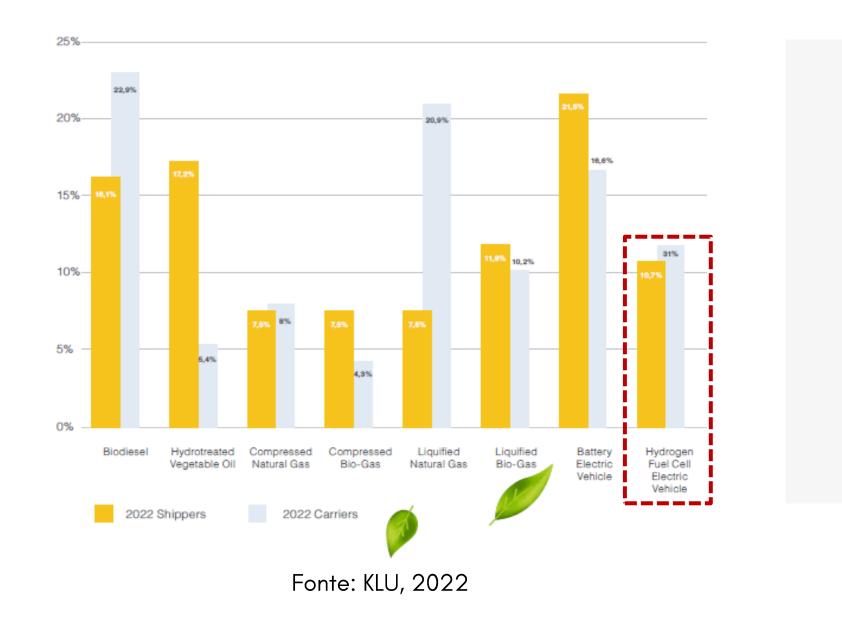
Readiness level of shipping fuels (
High -- Medium -- Low), IRENA 2021

	FUEL TECHNOLO GICAL READINESS ENGINE TECHNOLOGICAL	SCALABILITY & TIME TO MARKET	ENERGY DENSITY	GHGREDUCTION	ENGINE TECHNOLOGY	ADVANTAGES	CHALLENGES		FUEL TECHNOLO GICAL READINESS	ENGIN E TECHNOLOGICAL READINESS	SCALABILITY & TIME TO	MARKET ENERGY DENSITY	GHGREDUCTION	ENGIN E TECHNOLOGY	ADVANTAGES	CHALLENGES
Fuel Oil					ICE	Already used globally, has high efficiency and is low cost in comparison to alternative fuels.	HFO has high carbon emissions and particulate emissions from production and use in vessels.	Hydrogen						ICE	A main option as an energy carrier required in FCs. Still a Multiple applications across sectors, the st	H, production and storage is costly, requiring cryogenic storage. Still an immature technology in the shipping sector but has high potential as an alternative fuel.
LNG					ICE	Well-established supply Infrastructure, high energy density and is currently used in vessels globally. Has a lower sulphur content than	LNG has fewer emissions compared with HFO but still significantly more emissions than low-carbon alternative fuels.							FCs		
Advanced Liquid Biotuels					ICE	HFO. Biofuels have an established Infrastructure due to use in multiple sectors. Easy integration into current engines. Can be used as a drop-in fuel.	Uses non-renewable resources. Growth of feedstock used in biofuel production may affect land use, which could impact global food security. High demand from multiple sectors makes scaling difficult.	Ammonia						ice FCs	Ammonia has existing production and transport infrastructure due to the agricultural industry. Green ammonia is carbon neutral and has one of the highest efficiencies when compared to alternative fuels.	Global demand for ammonia across multiple sectors can cause scalability issues. Ammonia has a high production cost and is highly toxic, requiring special storage and safety measures.
Renewable Gaseous Fuels					ICE	Bunkering in ports can use LNG infrastructure, making Implementation cheaper. Ships that use LNG can switch to liquefied biogas (LBG) as a drop-in fuel.	Limitations with storage capacity required for LBG. Can only be considered for short- distance vessels. Long-distance vessels would require large storage capacity.	Methanol						ice FCs	Currently used in a multitude of sectors and can be implemented within the shipping sector with relative ease. Using e-methanol and bio-methanol is 100% renewable.	Difficulties in acquiring sustainable and cost-effective carbon sources. Green methanol has high production costs.

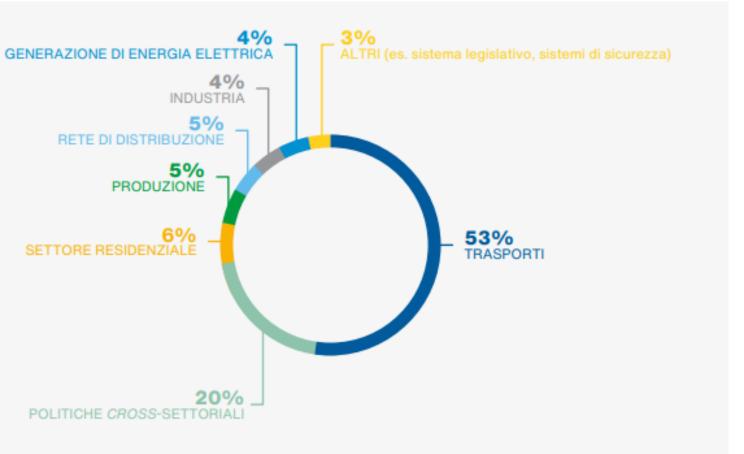

BiLOG 2022 – Logistics and Maritime Forum – 10/11/2022

Idrogeno nella logistica: ostacoli e opportunità Principali sfide

BiLOG 2022 – Logistics and Maritime Forum – 10/11/2022


Stoccaggio

Densità estremamente bassa \rightarrow compressione o liquefazione per


Idrogeno nella logistica: ostacoli e opportunità Opportunità di sviluppo

Soluzioni prioritarie per carriers e shippers

BiLOG 2022 – Logistics and Maritime Forum – 10/11/2022

Ambito di destinazione delle policy a supporto dell'idrogeno mappate in tutto il mondo

Fonte: H2 ITALY 2050, 2020

Agenda

Key speakers

BiLOG 2022 – Logistics and Maritime Forum – 10/11/2022

Idrogeno come soluzione di propulsione alternativa Hot topic

Idrogeno nella logistica Ostacoli e opportunità

Key speakers

Andrea Condotta Public affairs & Innovation Manager Gruber Logistics

"Hydrogen and Alternative fuels: available solutions and potential opportunities for the transport sector"

Grzegorz Pawelec Director Intelligence Hydrogen Europe

"Hydrogen's big opportunity in the maritime sector"

BiLOG 2022 – Logistics and Maritime Forum – 10/11/2022

Carles Rua Head of Innovation Port of Barcelona

Marcello Romagnoli

Professor at Department of Engineering 'Enzo Ferrari' University of Modena and Reggio Emilia, Director of H2 Mo.Re Center

"The H2 beyond the H2: the need for an industrial chain"